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Lewis-number effects on edge-flame propagation
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Activation-energy asymptotics is employed to explore effects of the Lewis number,
the ratio of thermal to fuel diffusivity, in a one-dimensional model of steady motion
of edges of reaction sheets. The propagation velocity of the edge is obtained as a
function of the relevant Damköhler number, the ratio of the diffusion time to the
chemical time. The results show how Lewis numbers different from unity can increase
or decrease propagation velocities. Increasing the Lewis number increases the propa-
gation velocity at large Damköhler numbers and decreases it at small Damköhler
numbers. Advancing-edge and retreating-edge solutions are shown to exist simul-
taneously, at the same Damköhler number, if the Lewis number is sufficiently large.
This multiplicity of solutions has a bearing on potential edge-flame configurations in
non-uniform flows.

1. Introduction
Highly strained diffusion flames experience extinction. Strain-rate variations in

non-uniform flows can lead to extinctions at some locations while the diffusion flame
remains intact at others. This may result in a diffusion flame with an edge. Mixing
of fuel and oxidizer in the extinguished regions can lead to triple flames, which have
been addressed in a number of publications (Kioni et al. 1993; Ruetch, Vervisch &
Liñán 1995; Vervisch & Poinsot 1998). These are composed of a rich premixed flame
and a lean premixed flame, with a diffuion flame trailing behind from the nose where
they come together. The two premixed flames of the triple flame disappear, merging
into a propagating edge of the diffusion flame, if the strain rate is high enough for
the diffusive transport zones on each side of the diffusion flame to be comparable in
size with the preheat zone of the stoichiometric premixed propagating nose. Detailed
analyses of such edge flames in general necessitate considering the multidimensional,
time-dependent conservation equations. Buckmaster (1996), however, identified a one-
dimensional model that simplifies the analysis greatly and reveals many properties of
edge flames. The present work explores further the implications of a model of this
general type, addressing especially effects of the Lewis number of the fuel. In this
respect, it differs from our earlier use of this model (Nayagam & Williams 2001a),
which considered edge-curvature effects for Lewis number unity.

Experimental motivation for the present study stems from observations of rotating
spiral edge flames in von Kármán swirling flows (Nayagam & Williams 2000). Under
suitable conditions, slow injection of fuel through a spinning porous disk into air
results in flat diffusion-flame spirals, separated from the disk by a distance only on
the order of 1 mm, comparable with the corresponding premixed-flame preheat-zone
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thickness (Nayagam & Williams 2001b). Under other conditions, there are axisymmet-
ric flame disks and holes, described and analysed previously in Nayagam & Williams
(2001a). Propagation of the edge of a spiral into oncoming flow locally resembles
edge-flame propagation. Explanations of spiral flames thus can use knowledge of
edge-flame propagation velocities. As to be reported in a paper in preparation, the
spirals are observed to be different for fuels of different molecular weights, thereby
suggesting that the Lewis number of the fuel plays a role. For this reason, the present
work addresses Lewis-number effects. Such effects have been studied previously in
two-dimensional models (Daou & Liñán 1998; Thatcher & Dold 2000), but only to
a limited extent in the one-dimensional model (Buckmaster 1996).

The spiral flames are observed near extinction conditions, in that a small decrease
in the flow rate of the fuel completely extinguishes the flame. A mixture fraction,
defined to be unity in the fuel feed stream and zero in the air, already has a small
value, of order 0.1, at the external surface of the disk. The dominant heat loss from
the diffusion flame therefore occurs by conduction through the steep temperature
gradient from the flame to the surface of the disk. This tends to cause oxygen
leakage through the diffusion flame, even on the basis of one-step activation-energy
asymptotics, independent of detailed chemistry. Liñán’s (1974) premixed-flame regime
of the diffusion flame therefore appears to be more applicable than the diffusion-
flame regime addressed by Buckmaster (1996). The analysis is presented here for
the premixed-flame regime, although results are quoted also for the diffusion-flame
regime. Like Buckmaster (1996), we take the Lewis number of the oxidizer to be unity,
primarily because we believe that to be appropriate for the spiral-flame experiments in
air. Unlike Buckmaster (1996), however, we do not presume the fuel Lewis number to
be near unity in the detailed development, since we find that relaxing this restriction
adds a new dimension to the analysis and interpretations.

The one-dimensional edge-flame model resembles a premixed-flame model with
distributed heat loss. Such heat loss leads to flame extinction (Joulin & Clavin
1979; Williams 1985). The primary difference is that, in addition to losing heat
algebraically from the side, the edge flame gains fuel algebraically from the side. This
is a qualitatively strong difference that produces excess enthalpy when the fuel Lewis
number differs from unity. There is thus similarity to flames in excess-enthalpy burners
in which enhanced conduction of heat increases flame temperatures (Takeno, Sato &
Hase 1981). The following analysis may help to expose these various similarities and
differences.

2. Formulation
Steady propagation of the edge of the flame in the x-direction is considered in

figure 1. The edge is located at x = 0, and the diffusion flame extends to x = ∞.
In terms of density, ρ, the component, ν, of gas velocity in the x-direction and the
component, u, of gas velocity in the direction, z, normal to the diffusion-flame sheet,
integration of the equation of mass conservation across the reaction sheet results in

d(ρν)

dx
=
−[(ρu)+ − (ρu)−]

t
, (2.1)

where t denotes the thickness of the reaction sheet, which is of order εa, a being
the thickness of the diffusion layer between the sheet and the boundary and ε the
small parameter, the reciprocal of the non-dimensional activation energy. Here ρν
represents an average over the thin reaction zone, as will the other dependent variables
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Figure 1. Schematic illustration of the problem.

introduced below. The subscripts + and − identify conditions at the values z+ and z−
of z, just above and just below the reaction sheet, respectively. The negative right-hand
side of (2.1) describes the effects of streamline divergence as the fluid approaches the
hot flame. This is neglected, ρν being treated as constant. With this approximation,
the correspondingly integrated fuel and energy conservation equations are

ρν
dY

dx
− d

dx

(
ρD

dY

dx

)
= −w +

ρD

at
(1− Y ), (2.2)

ρν
dT

dx
− d

dx

(
λ

cp

dT

dx

)
=
q

cp
w − λ/cp

at
(T − T0). (2.3)

Here T denotes temperatures and Y the ratio of the fuel mass fraction to its value in
the fuel stream. The mass rate of consumption of fuel is given by the Arrhenius form

w = ρAY e−E/RT (2.4)

with E representing the activation energy, R the universal gas constant and A a char-
acteristic reciprocal-time rate prefactor. For a bimolecular reaction, A is proportional
to both pressure and the oxidizer mass fraction, the conservation equation for which
need not be addressed in the premixed-flame regime for the one-dimensional model.

In (2.2) and (2.3), the diffusion coefficient of the fuel is D, and the coefficient
of thermal conductivity is λ. The specific heat at constant pressure, cp, is assumed
constant, and q denotes the heat released per unit mass of fuel consumed. The
last term in (2.2) and (2.3) is obtained by evaluating the gradient at z = z− after
integrating across the sheet; gradients at z = z+ are neglected in comparison. The
wall temperature is T0, profiles are assumed linear in the diffusion layer, and the
products ρD and λ/cp are taken constant. The model of Buckmaster (1996) is less
explicit, the product at being a2, the square of a representative side diffusion length,
which becomes a

√
ε in the present formulation.

The boundary conditions for (2.2) and (2.3) are obtained by setting w = 0 for
x → −∞, giving Y → 1 and T → T0 as x → −∞, and vanishing of the right-
hand sides in the diffusion flame as x → +∞. This last condition requires the
non-dimensional temperature θ = cpT/q to assume the value θ∞ = θ0 +(1−Y∞)/L as
x → ∞, where the Lewis number, of order unity, is L = λ/(ρDcp), and the subscript
∞ identifies conditions at x = ∞.

A non-dimensional excess enthalpy, Z , can be defined by the equation

θ = θ0 + (1− Y )/L+ Z. (2.5)

A non-dimensional independent variable, s, and propagation velocity, V , are defined
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as s = x/
√
at, and V = v(ρcp/λ)

√
at, and the relevant Damköhler number is

∆ = (ρcp/λ)atAe−E/RTf , (2.6)

where Tf is a characteristic premixed-flame temperature, to be determined. The small
parameter of expansion is taken to be

ε = LRT 2
f /[E(q/cp)], (2.7)

the reciprocal of the Zel’dovich number, and solutions are sought for which V is of
order unity, with the ordering of ∆ not yet specified. Equations (2.2) and (2.3) then
reduce to

LV
dY

ds
− d2Y

ds2
− (1− Y ) = −L∆Y exp

(
L

ε

(
θ − θf
θ/θf

))
, (2.8)

d2Z

ds2
− V dZ

ds
− Z = V

(
L− 1

L

)
dY

ds
. (2.9)

Boundary conditions for (2.8) and (2.9) are Y → 1 and Z → 0 as s → −∞ and
Y → Y∞ and Z → 0 as s → +∞, according to the previous conditions. In (2.8),
θf = cpTf/q, and θf = θ0 + (1− Yf)/L+Zf according to (2.5), where the subscript f
identifies outer-zone variables evaluated at the premixed-flame reaction zone.

3. Solution
The premixed reaction zone is placed at s = 0. The value of Tf is to obey the

restriction that, in the region s < 0, θ < θf , so that the reaction term in (2.8) is
exponentially small. In this region, (2.8) and (2.9) are both linear and have as their
general solution, subject to the boundary conditions at s = −∞,

Y = 1− (1− Yf)eβs, (3.1)

Z = Zfe
αs + (eαs − eβs)(1− Yf)/L, (3.2)

where

α = (V +
√
V 2 + 4)/2, β = (LV +

√
L2V 2 + 4)/2. (3.3)

Possible partial-burning solutions, for which Yf is of order unity, are not addressed.
The value of Yf is instead assumed no larger than order ε, that is, Yf = εyf , where
yf may be of order unity. In the reaction zone at s = 0 it is then appropriate to
introduce stretchings

y = Y /ε, η = βs/ε+ ηf, (3.4)

where the order-unity factor β is for later convenience in matching, and where ηf is
a constant of order unity. Presuming Zf to be of order unity, we deduce from (2.9)
that, to leading order, both Z and dZ/ds are continuous across the reaction zone,
while there is a jump in d2Z/dx2 proportional to the jump in dY /ds. Through terms
of order ε, then, within the reaction zone, Z = Zf + εZ ′f(η − ηf)/β, where

Z ′f = αZf + (α− β)/L (3.5)

from the derivative of (3.2). Substitution of (2.5), (3.4) and (3.5) into (2.8) then yields,
to leading order, the problem

2
d2y

dη2
= ye−(y+mη),

dy

dη
→ −1 as η → −∞, dy

dη
→ 0 as η → +∞, (3.6)
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provided that ∆ is of order ε−2, ηf is chosen such that

∆ = β2(2ε2L)−1e−(yf+mηf ), (3.7)

and m is defined as

m = −LZ ′f/β. (3.8)

The derivative of (3.1) was used in deriving the matching condition for η → −∞.
Equation (3.6) is the problem describing the inner structure in Liñán’s premixed-flame
regime, and the definitions have been selected to obtain exactly the same form, so
that available solutions (Liñán 1974) can be used most readily.

These results enable the complete solution for the excess enthalpy to be obtained
at leading order. In the region s > 0, the left-hand side of equation (2.9) is of higher
order, and the solution having Z → 0 as s→∞ is then

Z = Zfe
−γs, (3.9)

where

γ = (
√
V 2 + 4− V )/2, (3.10)

and the continuity of Z at s = 0 has been employed. The continuity of dZ/ds implies
from the derivative of (3.9) that Z ′f = −γZf , which may be used in equation (3.5) to
show with the aid of (3.3) and (3.10) that

Zf = (β − α)/(L
√
V 2 + 4). (3.11)

By making use of equations (3.1), (3.2), (3.3), (3.9) and (3.10), it can be shown that the
jump condition for d2Z/ds2, implied by (2.9), is satisfied identically as a consequence
of (3.11), and equation (3.8) becomes

m = γ(β − α)/(β
√
V 2 + 4). (3.12)

These results enable the solution for the normalized fuel mass fraction Y to be
obtained downstream (s > 0) to leading order. Equation (2.5) indicates that, in this
region, to leading order θ = θ∞ + Z , with Z given by (3.9). From (3.11), then,

θf = θ∞ +
βm

γ
= θ∞ +

β − α
L
√
V 2 + 4

. (3.13)

Substitution of these results into (2.8), with the realization that Z (and therefore θ)
is evolving on a length scale such that changes in s are of order unity, demonstrates
that the largest terms in the expansion for small ε, with Y of order ε or smaller,
are provided by the right-hand side and by unity on the left-hand side. Hence the
dominant balance is that of reaction and side diffusion in the diffusion flame, with a
variable flame temperature imposed by the convective–diffusive balance of the excess
enthalpy. These substitutions into (2.8) produce, to leading order,

Y =

(
1

L∆

)
exp

[ −(L/ε)θf(1− e−γs)
(θf/θ∞ − 1)−1 + e−γs

]
, (3.14)

which is exponentially small in ε for s > 0 whenever θf − θ∞ is larger than order ε.
At s = 0, Y is of order ε2 in this region according to (3.7) and (3.14). Similarly, as
s→ ∞, in terms of a redefined Damköhler number and small parameter ε, based on
T∞ instead of Tf , Y is of order ε2 when the Dahmköhler number is of order ε−2.

The propagation velocity V is obtained from the solution for the premixed-flame
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regime (Liñán 1974), which relates ∆ to m. The solution provides n as a function of
m, where n denotes the limiting value of y + η as η → −∞. The matching condition
for η → −∞ is then found from (3.1) and (3.4) to require

yf + ηf = n. (3.15)

To determine the solution at this order completely, it is necessary to consider the
solutions in the outer zones at order ε, for example by replacing Zf by Zf + εzf and
imposing continuity of the value and slope of Z across the reaction zone at this order.
It is thereby found that the jump condition for d2Z/ds2 and matching can be satisfied
at this order in different ways. One possibility is to put zf = 0, implying that yf = 0,
that is Yf is smaller than order ε, namely of order ε2, to match to the downstream
solution. From this result and (3.15), equation (3.7) then becomes

∆ = β2(2ε2Lemn)−1. (3.16)

With the problem posed as specifying V at order ε and finding ∆ to leading order,
(3.16) results. In view of (3.3) and (3.10), equation (3.12) relates m to V and L, and
from the known (Liñán 1974) dependence of mn on m, equation (3.16) then relates ∆ to
V and L. The relationships are somewhat involved since, from (2.7), ε = θ2

fLRq/(cpE),
with θf dependent on V and L according to (3.13), and, similarly, from (2.6),

∆ = ∆∞ exp

[
E

RT∞

(
θf − θ∞
θf

)]
, (3.17)

where ∆∞ is defined by replacing Tf by T∞ in (2.6). It is therefore of interest to
investigate limiting cases.

4. Results
From (2.5), (3.1), (3.2) and (3.11), the preheat-zone solution for temperature is

θ = θ0 +
1

L

(
1 +

β − α√
V 2 + 4

)
eαs, (4.1)

which is monotonic, with θf > θ0 for all values of V and L. Downstream, however,

θ = θ∞ +

(
β − α

L
√
V 2 + 4

)
e−γs, (4.2)

which has θf > θ∞ only for β > α, that is, for L > 1 if V > 0 and for L < 1 if V < 0.
Positive excess enthalpy is generated for Lewis numbers greater than unity when
V > 0 and for Lewis numbers less than unity when V < 0. If either L = 1 or V = 0,
then there is no excess enthalpy, and θf = θ∞. According to (3.11) and (3.12), the excess
enthalpy is positive for m > 0 and negative for m < 0, as it must be (Liñán 1974).
Stable propagation is anticipated for m < 0, heat from the diffusion flame driving the
premixed edge flame, but instability is anticipated as m becomes sufficiently positive
(Peters 1978). This expectation is only partially qualitatively consistent with existing
(Buckmaster 1996) stability results derived for Lewis numbers near unity; stability is
not addressed in detail in the present work.

Although various expansions can be developed for large and small values of L, it
is of greatest interest to consider Lewis numbers near unity, putting L = 1 + ε` with
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Figure 2. Edge velocity as function of Damköhler number for various ` values.

` of order unity. In this limit,

θf − θ∞ = Zf =
ε`V

2
√
V 2 + 4

(
1 +

V√
V 2 + 4

)
, (4.3)

m =
ε`V

2
√
V 2 + 4

(
1− V√

V 2 + 4

)
, (4.4)

both of which are small. Expansions of (3.16) and (3.17) then provide, to leading
order,

V +
√
V 2 + 4 = 2ε∞

√
2∆∞ exp

[(
`V

4
√
V 2 + 4

)(
1 +

V√
V 2 + 4

)]
, (4.5)

with the definition ε∞ = T 2∞R/[E(q/cp)]. Equation (4.5) is finally a single expression
for V as a function of ` and of

δ = ε∞
√

2∆∞ =
T 2∞R
E(q/cp)

√
2ρcpatA

λ
e−E/(2RT∞). (4.6)

Figure 2 shows the dependence of V on δ for various values of `, according to (4.5).
For ` = 0, Lewis number of unity, (4.5) reduces to

V = δ − δ−1, (4.7)

which goes to infinity as δ → ∞ and minus infinity as δ → 0, and vanishes at δ = 1.
For ` 6= 0 (4.5) is more complicated. When V is large and positive, (4.5) becomes

V = δe`/2, (4.8)

showing that (figure 2), Lewis numbers greater than unity increase V , while Lewis
numbers less than unity decrease it, in accord with the effect of Lewis number on
excess enthalpy. When V is negative and large in magnitude, an expansion of (4.5)
gives

V = −(1/δ)e`/(2V
2), (4.9)

which again shows that Lewis numbers greater than unity increase the magnitude of
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V , while Lewis numbers less than unity decrease it, also seen in figure 2. This again is
consistent with influences of the excess enthalpy, since in this case Lewis numbers less
than unity correspond to positive excess enthalpy, which may be expected to enhance
propagation of the flame edge, that is, retard the rate at which the edge retreats.
Unlike the situation for positive V , however, the effect of the Lewis number is seen
from (4.9) to become negligible as the magnitude of V increases, yielding the limiting
value V = −1/δ, corresponding to the last term in (4.7) for δ � 1, independent of
the value of `. Rapidly retreating edges prevent buildup of excess enthalpy.

Behaviours at smaller values of V , that is, for δ closer to unity, are more interesting.
Expanding the functions of V in (4.5) for small values of V produces the equation

V + 2 = 2δeV`/8 ≈ 2δ(1 + V`/8). (4.10)

The result that V = 0 when δ = 1, as in (4.7), is seen to apply for all Lewis numbers,
but for δ near unity, (4.10) becomes

V (1− `/4) = 2(δ − 1), (4.11)

which reverses its behaviour for ` > 4. When ` < 4, the increase in V with increasing
δ, at a rate that increases with increasing `, persists. Increasing Lewis numbers,
for Lewis numbers near unity, increase the magnitude of the propagation velocity,
irrespective of whether it is positive or negative, that is, irrespective of whether δ
exceeds or is less than unity. For ` > 4, however, V decreases with increasing δ for
δ near unity, at a rate that decreases with increasing `. The propagation velocity
becomes a non-monotonic function of the Damköhler number, there being three
values of V for each value of δ in a range between a minimum δ < 1 and a maximum
δ > 1. When δ < 1, two values are positive and one negative, while for δ > 1 two
are negative and one positive (figure 2). Static stability reasoning suggests that the
middle solution is unstable; for example, for δ < 1, a small increase of V above the
smaller of the two positive solutions increases the excess enthalpy, thereby tending
to increase V further. It therefore appears that, when ` > 4, if δmin(`) < δ < δmax(`)
(with δmin(`) < 1, δmax(`) > 1, δmax(`) → 1 as ` → 4, δmin(`) → 0 and δmax(`) → ∞
as ` → ∞), there are two statically stable edge-flame solutions for each `, one for
an advancing edge and the other for a retreating edge. Figure 2 shows, further, that
this three-solution type of behaviour persists for ` < 4, until ` = 2.4, but over a
decreasing range of δ, and now with all three solutions for V positive.

5. Discussion
The preceding analysis has addressed edge flames on the basis of a one-dimensional

model. The resulting edges advance at large Damköhler numbers and retreat at small
Damköhler numbers, as demonstrated previously (Buckmaster 1996). The Lewis
number affects the rates of advance or retreat mainly by its influence on the excess
enthalpy at the edge. For sufficiently large Lewis numbers, the dependence of the
propagation velocity of the edge on the Damköhler number is not monotonic; there is
a region about a propagation velocity of zero (an edge that is stationary with respect
to the gas) over which the steady propagation velocity decreases with increasing
Damköhler number, and the steady solution is likely to be unstable. Under these
conditions there appear to be two stable steady solutions, one for an advancing edge
and the other for a retreating edge. These solutions may apply to the leading and
trailing edges observed (Nayagam & Williams 2000) for spiral flames in von Kármán
swirling flows.
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Although the full analysis was completed only for Lewis numbers near unity,
the general formulas in the solution apply for arbitrary Lewis numbers. The inner
structure of the steadily propagating edge in general was shown to be that of Liñán’s
premixed-flame regime (Liñán 1974), with heat loss away from the edge into the fresh
mixture. There may be either heat loss or heat gain from the diffusion flame. As the
Lewis number approaches unity, the loss or gain from the diffusion flame becomes
small, producing the inner structure of an ordinary propagating adiabatic flame. The
fuel concentration in the reaction zone at the edge exceeds its value in the diffusion
flame, thereby tending to increase the chemical reaction rate there. When θf > θ∞,
the Arrhenius factor also is larger at the edge, so that it is the most active part of the
flame under these conditions. Since the full implications of the analysis were explored
only for Lewis numbers near unity, it would be of interest to investigate further the
edge-flame properties for general Lewis numbers on the basis of the solutions that
have been obtained here.

Although the analysis was performed only for the premixed-flame regime of the
downstream diffusion flame, similar results would be obtained for the diffusion-flame
regime. The only difference would be that the oxidizer concentration also would vary
in the inner reaction zone at the edge. A premixed-flame regime would still apply
there, but in the reaction term in (3.6), for example, y would become y2 in front of the
exponential. Specific orderings would be affected. For example, for Lewis numbers
near unity, fuel and oxidizer concentrations in the diffusion flame away from the
edge are of order ε

√
ε for the diffusion-flame regime (Buckmaster 1996), while the

fuel concentration there is of order ε2 for the premixed-flame regime analysed here.
Since only these details are affected, the general characteristics of the solution do
not depend on the specific assumptions of the problem. The present results would
therefore apply to edges of both diffusion flames and premixed flames. Consideration
of the diffusion-flame regime with an oxidizer Lewis number different from unity
could, however, reveal different Lewis-number effects.

6. Conclusions
This study has shown how to describe steady edge-flame propagation for general

Lewis numbers. It has demonstrated important influences of excess enthalpy. For
a Lewis number of unity, there is no excess enthalpy, and the edge advances at
high Damköhler numbers and retreats at low Damköhler numbers. The Damköhler
number corresponding to a stationary edge is independent of the Lewis number. For
all Lewis numbers less than unity, advancing edges develop negative excess enthalpy,
exhibiting temperatures less than those of the downsteam planar flame. Consequently
they propagate slower than they would if the Lewis number were unity. On the other
hand, retreating edges develop positive excess enthalpy, exhibiting temperatures above
those of the upstream flame. This causes a slower retreat than would occur if the
Lewis number were unity. For Lewis numbers slightly greater than unity, advancing
edges experience positive excess enthalpy and advance more rapidly, while retreating
edges have negative excess enthalpy and retreat more rapidly, than they would if the
Lewis number were unity. The competition between fuel diffusion and conductive
heat loss is responsible for these effects. Advancing edges experience fuel depletion by
transverse diffusion ahead of the edge, at relative rates that increase with decreasing
Lewis numbers, while receding edges have conductive heat-loss rates that increase
proportionally with increasing Lewis numbers.

There are conditions for sufficiently large Lewis numbers under which both advanc-
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ing and receding edges may exist with the same chemical reaction-rate parameters.
This non-monoticity in the dependence of the Damköhler number on the propagation
velocity is a consequence of the interplay between heat conduction and fuel diffusion
for weakly diffusing fuels in strongly conducting gases. Three solutions exist for the
steady propagation velocity at a given Damköhler number in this intermediate range,
the middle one of which is quite likely to be unstable. It would be worthwhile to
perform stability analyses, allowing not only for pulsating instability but also for non-
planar instability involving waves propagating along the flame edge and wrinkling
it. From results for instabilities of planar premixed flames (Joulin & Clavin 1979),
wrinkled cellular-flame instabilities are expected for Lewis numbers sufficiently less
than unity. The same results suggest that travelling waves or pulsations may occur
at larger Lewis numbers, especially those for which the multiplicity of propagation
velocities exhibits both rapidly advancing and retreating edges.

The existence of stable steady advancing and retreating edges at the same
Damköhler number may have a bearing on behaviours of experimentally observed
edge flames. Spiral flames in von Kármán swirling flows possess steadily propagat-
ing well-defined leading and trailing edges (Nayagam & Williams 2000). Equating
the propagation velocity to the flow velocity at each of these edges may enable the
shape of the spiral to be calculated. The positive and negative propagation velocity
may apply to the leading and trailing edge, respectively. Further research therefore
seems warranted, investigating relationships of predictions of this simplified model to
experimental measurements of edge flames.

This work was supported by the NASA Microgravity Combustion Science Program.
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